

BEGINNING
SOFTWARE ENGINEERING

INTRODUCTION ��xxvii

▸▸ PART I SOFTWARE ENGINEERING STEP-BY-STEP

CHAPTER 1	 Software Engineering from 20,000 Feet �� 3

CHAPTER 2	 Before the Beginning�� 15

CHAPTER 3	 The Team �� 29

CHAPTER 4	 Project Management�� 53

CHAPTER 5	 Requirements Gathering �� 81

CHAPTER 6	 High-Level Design �� 117

CHAPTER 7	 Low-Level Design�� 155

CHAPTER 8	 Security Design�� 185

CHAPTER 9	 User Experience Design�� 209

CHAPTER 10	 Programming�� 245

CHAPTER 11	 Algorithms �� 273

CHAPTER 12	 Programming Languages�� 307

CHAPTER 13	 Testing �� 327

CHAPTER 14	 Deployment�� 359

CHAPTER 15	 Metrics�� 371

CHAPTER 16	 Maintenance�� 401

▸▸ PART II PROCESS MODELS

CHAPTER 17	 Predictive Models�� 427

CHAPTER 18	 Iterative Models�� 445

CHAPTER 19	 RAD �� 465

Continues

▸▸ PART III ADVANCED TOPICS

CHAPTER 20	 Software Ethics�� 523

CHAPTER 21	 Future Trends�� 547

APPENDIX	 Solutions to Exercises�� 559

GLOSSARY���631

INDEX���663

BEGINNING

Software Engineering

BEGINNING

Software Engineering

Second Edition

Rod Stephens

Copyright © 2023 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBN: 978-1-119-90170-9
ISBN: 978-1-119-90172-3 (ebk.)
ISBN: 978-1-119-90171-6 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affili-
ates in the United States and other countries and may not be used without written permission. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this
book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was written and when it is read.
Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2022944804

Cover Image and Design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

ABOUT THE AUTHOR

Rod Stephens started out as a mathematician, but while studying at MIT, he discovered how much
fun programming is and he’s been programming professionally ever since. He’s a long-time developer,
instructor, and author who has written more than 250 magazine articles and 35 books that have been
translated into many different languages.

During his career, Rod has worked on an eclectic assortment of applications in such fields as tel-
ephone switching, billing, repair dispatching, tax processing, wastewater treatment, concert ticket
sales, cartography, optometry, and training for professional football teams. (That’s US football, not
one of the kinds with the round ball. Or the kind with three downs. Or the kind with an oval field.
Or the indoor kind. Let’s just say NFL and leave it at that.)

Rod’s popular C# Helper website (www.csharphelper.com) receives millions of hits per year and
contains thousands of tips, tricks, and example programs for C# programmers. His VB Helper
website (www.vb-helper.com) contains similar material for Visual Basic programmers.

You can contact Rod at RodStephens@csharphelper.com.

ABOUT THE TECHNICAL EDITOR

John Mueller is a freelance author and technical editor. He has writing in his blood, having produced
122 books and more than 600 articles to date. The topics range from networking to artificial intel-
ligence and from database management to heads-down programming. Some of his current books
include discussions of data science, machine learning, and algorithms. He also writes about computer
languages such as C++, C#, and Python. His technical editing skills have helped more than 70 authors
refine the content of their manuscripts. John has provided technical editing services to a variety of
magazines, performed various kinds of consulting, and he writes certification exams. Be sure to
read John’s blog at http://blog.johnmuellerbooks.com. You can reach John on the
Internet at John@JohnMuellerBooks.com. John also has a website at www.johnmuellerbooks
.com.

http://www.csharphelper.com
http://www.vb-helper.com
mailto:RodStephens@csharphelper.com
http://blog.johnmuellerbooks.com
mailto:John@JohnMuellerBooks.com
http://www.johnmuellerbooks.com
http://www.johnmuellerbooks.com

ACKNOWLEDGMENTS

Thanks to David Clark, Christine O’Connor, Kenyon Brown, Judy Flynn, Barath Kumar Rajasekaran,
and all of the others who worked so hard to make this book possible. David was this book’s project
manager. You’ll learn what a project manager does in Chapter 4. It’s a bit different for writing a book
but not as different as you might think. Many thanks for your hard work, David!

Thanks also to technical editor and longtime friend John Mueller for giving me the benefit of his
valuable experience. You can see what John’s up to at www.johnmuellerbooks.com.

Special thanks to Mary Brodie at https://gearmark.blogs.com for letting me use her quote at
the beginning of Chapter 18, “Iterative Models.”

http://www.johnmuellerbooks.com
https://gearmark.blogs.com

CONTENTS

INTRODUCTION� xxvii

PART I: SOFTWARE ENGINEERING STEP-BY-STEP

CHAPTER 1: SOFTWARE ENGINEERING FROM 20,000 FEET	 3

Requirements Gathering	 4
High-Level Design	 5
Low-Level Design	 6
Development	 6
Testing	 7
Deployment	 9
Maintenance	 10
Wrap-Up	 10
Everything All at Once	 11
Summary	 12
What You Learned in This Chapter	 13

CHAPTER 2: BEFORE THE BEGINNING	 15

Document Management	 16
Historical Documents	 19
Email	 19
Code	 22
Code Documentation	 22
Application Documentation	 25
Summary	 26
What You Learned in This Chapter	 27

CHAPTER 3: THE TEAM	 29

Team Features	 30
Clear Roles	 30
Effective Leadership	 30
Clear Goals	 31
Consensus	 32
Open Communication	 32
Support for Risk-Taking	 33

Contents

xii

Shared Accountability	 33
Informal Atmosphere	 34
Trust	 34

Team Roles	 34
Common Roles	 35
More-Specialized Roles	 36
Informal Roles	 36
Roles Wrap-Up	 37

Team Culture	 37
Interviews	 40

Interview Puzzles	 40
The Bottom Line	 41

Physical Environment	 41
Creativity	 41
Office Space	 43
Ergonomics	 43
Work-Life Balance	 45

Collaboration Software	 46
Searching	 46
Overload	 47

Outsourcing	 47
Summary	 48
What You Learned in This Chapter	 50

CHAPTER 4: PROJECT MANAGEMENT	 53

Executive Support	 54
Project Management	 56

PERT Charts	 57
Critical Path Methods	 62
Gantt Charts	 65
Scheduling Software	 67
Predicting Times	 68

Get Experience	 69
Break Unknown Tasks into Simpler Pieces	 70
Look for Similarities	 71
Expect the Unexpected	 71
Track Progress	 73

Risk Management	 74
Summary	 76
What You Learned in This Chapter	 79

Contents

xiii

CHAPTER 5: REQUIREMENTS GATHERING	 81

Requirements Defined	 82
Clear	 82
Unambiguous	 83
Consistent	 84
Prioritized	 84
Verifiable	 88
Words to Avoid	 89

Requirement Categories	 89
Audience-Oriented Requirements	 90

Business Requirements	 90
User Requirements	 90
Functional Requirements	 91
Nonfunctional Requirements	 92
Implementation Requirements	 92

FURPS	 92
FURPS+	 93
Common Requirements	 96

Gathering Requirements	 96
Listen to Customers (and Users)	 97
Use the Five Ws (and One H)	 98

Who	 98
What	 98
When	 98
Where	 98
Why	 99
How	 99

Study Users	 99
Refining Requirements	 100

Copy Existing Systems	 101
Clairvoyance	 102
Brainstorm	 103

Recording Requirements	 106
UML	 107
User Stories	 107
Use Cases	 108
Prototypes	 108
Requirements Specification	 109

Validation and Verification	 110
Changing Requirements	 110

Contents

xiv

Digital Transformation	 111
What to Digitize	 111
How to Digitize	 112

Summary	 113
What You Learned in This Chapter	 116

CHAPTER 6: HIGH-LEVEL DESIGN	 117

The Big Picture	 118
What to Specify	 119

Security	 119
Hardware	 120
User Interface	 121
Internal Interfaces	 122
External Interfaces	 123
Architecture	 124

Monolithic	 124
Client/Server	 125
Component-Based	 127
Service-Oriented	 128
Data-Centric	 130
Event-Driven	 130
Rule-Based	 130
Distributed	 131
Mix and Match	 132

Reports	 133
Other Outputs	 134
Database	 135

Audit Trails	 136
User Access	 136
Database Maintenance	 137
NoSQL	 137
Cloud Databases	 138

Configuration Data	 138
Data Flows and States	 139
Training	 139

UML	 141
Structure Diagrams	 142
Behavior Diagrams	 145

Activity Diagrams	 145
Use Case Diagram	 146

Contents

xv

State Machine Diagram	 147
Interaction Diagrams	 148

Sequence Diagram	 148
Communication Diagram	 150
Timing Diagram	 150
Interaction Overview Diagram	 151
UML Summary	 151

Summary	 151
What You Learned in This Chapter	 152

CHAPTER 7: LOW-LEVEL DESIGN	 155

Design Approaches	 156
Design-to-Schedule	 157
Design-to-Tools	 158
Process-Oriented Design	 158
Data-Oriented Design	 159
Object-Oriented Design	 159
Hybrid Approaches	 159
High, Low, and Iterative Design	 160

OO Design	 160
Identifying Classes	 161
Building Inheritance Hierarchies	 162

Refinement	 163
Generalization	 165
Hierarchy Warning Signs	 167

Object Composition	 167
Database Design	 168

Relational Databases	 168
First Normal Form	 170
Second Normal Form	 174
Third Normal Form	 176
Higher Levels of Normalization	 179

When to Optimize	 180
Summary	 180
What You Learned in This Chapter	 182

CHAPTER 8: SECURITY DESIGN	 185

Security Goals	 186
Security Types	 186
Cybersecurity	 188

Contents

xvi

Shift-Left Security	 189
Malware Menagerie	 189
Phishing and Spoofing	 193
Social Engineering Attacks	 195
Crapware	 197
Password Attacks	 198
User Access	 201
Countermeasures	 201
Cyber Insurance	 202
Summary	 203
What You Learned in This Chapter	 207

CHAPTER 9: USER EXPERIENCE DESIGN	 209

Design Mindset	 210
UI vs. UX	 210
UX Designers	 211
Platform	 212
User Skill Level	 214
Beginners and Beyond	 216
Configuration	 217
Hidden Configuration	 218
Models	 219
Metaphors and Idioms	 220
Case Study: Microsoft Word	 221

Design Guidelines	 225
Allow Exploration	 225
Make the Interface Immutable	 227
Support Commensurate Difficulty	 227
Avoid State	 228
Make Similar Things Similar	 228
Provide Redundant Commands	 230
Do the Right Thing	 231
Show Qualitative Data, Explain Quantitative Data	 232
Give Forms Purpose	 232
Gather All Information at Once	 233
Provide Reasonable Performance	 234
Only Allow What’s Right	 235
Flag Mistakes	 235

Form Design	 236
Use Standard Controls	 236

Decorating	 237

Contents

xvii

Displaying	 237
Arranging	 237
Commanding	 238
Selecting	 238
Entering	 239

Display Five Things	 240
Arrange Controls Nicely	 241

Summary	 241
What You Learned in This Chapter	 242

CHAPTER 10: PROGRAMMING	 245

Tools	 246
Hardware	 246
Network	 247
Development Environment	 248
Source Code Control	 249
Profilers	 249
Static Analysis Tools	 249
Testing Tools	 249
Source Code Formatters	 250
Refactoring Tools	 250
Training	 250
Collaboration Tools	 250

Algorithms	 251
Top-Down Design	 252
Programming Tips and Tricks	 255

Be Alert	 255
Write for People, Not the Computer	 255
Comment First	 256
Write Self-Documenting Code	 259
Keep It Small	 259
Stay Focused	 261
Avoid Side Effects	 261
Validate Results	 262
Practice Offensive Programming	 264
Use Exceptions	 266
Write Exception Handlers First	 266
Don’t Repeat Code	 267
Defer Optimization	 267

Summary	 269
What You Learned in This Chapter	 270

Contents

xviii

CHAPTER 11: ALGORITHMS	 273

Algorithm Study	 274
Algorithmic Approaches	 275

Decision Trees	 275
Knapsack	 275
The Eight Queens Problem	 276

Exhaustive Search	 277
Backtracking	 278
Pruning Trees	 279
Branch and Bound	 279
Heuristics	 280
Greedy	 281
Divide and Conquer	 282
Recursion	 283
Dynamic Programming	 285
Caching	 287
Randomization	 287

Monte Carlo Algorithms	 287
Las Vegas Algorithms	 288
Atlantic City Algorithms	 289

State Diagrams	 289
Design Patterns	 290

Creational Patterns	 291
Structural Patterns	 291
Behavioral Patterns	 292
Design Pattern Summary	 293

Parallel Programming	 293
Artificial Intelligence	 295

Definitions	 295
Learning Systems	 296
Natural Language Processing	 297
Artificial Neural Network	 297
Deep Learning	 297
Expert System	 298
Artificial General Intelligence	 298

Algorithm Characteristics	 301
Summary	 302
What You Learned in This Chapter	 304

Contents

xix

CHAPTER 12: PROGRAMMING LANGUAGES	 307

The Myth of Picking a Language	 308
Language Generations	 311

First Generation	 311
Second Generation	 311
Third Generation (3GL)	 312
Fourth Generation	 313
Fifth Generation	 314
Sixth Generation	 314
IDEs	 315

Language Families	 316
Assembly	 316
Imperative	 317
Procedural	 317
Declarative	 318
Object-Oriented	 318
Functional	 319
Specialized	 319
Language Family Summary	 319

The Best Language	 319
Summary	 323
What You Learned in This Chapter	 324

CHAPTER 13: TESTING	 327

Testing Goals	 329
Reasons Bugs Never Die	 330

Diminishing Returns	 330
Deadlines	 330
Consequences	 330
It’s Too Soon	 330
Usefulness	 331
Obsolescence	 331
It’s Not a Bug	 331
It Never Ends	 332
It’s Better Than Nothing	 333
Fixing Bugs Is Dangerous	 333
Which Bugs to Fix	 334

Levels of Testing	 334
Unit Testing	 335

Contents

xx

Integration Testing	 336
Regression Testing	 337
Automated Testing	 337
Component Interface Testing	 338
System Testing	 339
Acceptance Testing	 340
Other Testing Categories	 341

Testing Techniques	 342
Exhaustive Testing	 342
Black-Box Testing	 343
White-Box Testing	 344
Gray-Box Testing	 344

Testing Habits	 345
Test and Debug When Alert	 345
Test Your Own Code	 346
Have Someone Else Test Your Code	 346
Fix Your Own Bugs	 348
Think Before You Change	 349
Don’t Believe in Magic	 349
See What Changed	 350
Fix Bugs, Not Symptoms	 350
Test Your Tests	 350

How to Fix a Bug	 351
Estimating Number of Bugs	 351

Tracking Bugs Found	 352
Seeding	 353
The Lincoln Index	 353

Summary	 355
What You Learned in This Chapter	 357

CHAPTER 14: DEPLOYMENT	 359

Scope	 360
The Plan	 361
Cutover	 362

Staged Deployment	 362
Gradual Cutover	 363
Incremental Deployment	 365
Parallel Testing	 365

Deployment Tasks	 365

Contents

xxi

Deployment Mistakes	 366
Summary	 368
What You Learned in This Chapter	 370

CHAPTER 15: METRICS	 371

Wrap Party	 372
Defect Analysis	 372

Species of Bugs	 373
Discoverer	 373
Severity	 374
Creation Time	 374
Age at Fix	 374
Task Type	 375
Defect Database	 376

Ishikawa Diagrams	 376
Software Metrics	 379

Qualities of Good Attributes and Metrics	 381
Using Metrics	 382

Process Metrics	 384
Project Metrics	 384

Things to Measure	 385
Size Normalization	 387
Function Point Normalization	 389

Count Function Point Metrics	 390
Multiply by Complexity Factors	 391
Calculate Complexity Adjustment Value	 392
Calculate Adjusted FP	 394

Summary	 395
What You Learned in This Chapter	 398

CHAPTER 16: MAINTENANCE	 401

Maintenance Costs	 402
Task Categories	 404

Perfective Tasks	 404
Feature Improvements	 406
New Features	 406
The Second System Effect	 407

Adaptive Tasks	 408
Corrective Tasks	 410

Contents

xxii

Preventive Tasks	 414
Clarification	 414
Code Reuse	 415
Improved Flexibility	 416
Bug Swarms	 417
Bad Programming Practices	 417

Individual Bugs	 418
Not Invented Here	 418

Task Execution	 419
Summary	 420
What You Learned in This Chapter	 423

PART II: PROCESS MODELS

CHAPTER 17: PREDICTIVE MODELS	 427

Model Approaches	 428
Prerequisites	 428
Predictive and Adaptive	 429

Success and Failure Indicators for Predictive Models	 430
Advantages and Disadvantages of Predictive Models	 431

Waterfall	 432
Waterfall with Feedback	 433
Sashimi	 434
Incremental Waterfall	 436
V-model	 438
Software Development Life Cycle	 439
Summary	 442
What You Learned in This Chapter	 444

CHAPTER 18: ITERATIVE MODELS	 445

Iterative vs. Predictive	 446
Iterative vs. Incremental	 448
Prototypes	 449

Types of Prototypes	 451
Pros and Cons	 451

Spiral	 453
Clarifications	 455
Pros and Cons	 456

Unified Process	 457

Contents

xxiii

Pros and Cons	 459
Rational Unified Process	 459

Cleanroom	 460
Cowboy Coding	 461
Summary	 461
What You Learned in This Chapter	 463

CHAPTER 19: RAD	 465

RAD Principles	 467
James Martin RAD	 470
Agile	 471

Self-Organizing Teams	 473
Agile Techniques	 474

Communication	 474
Incremental Development	 475
Focus on Quality	 478

XP	 478
XP Roles	 479
XP Values	 480
XP Practices	 481

Have a Customer On-Site	 481
Play the Planning Game	 482
Use Stand-Up Meetings	 483
Make Frequent Small Releases	 483
Use Intuitive Metaphors	 484
Keep Designs Simple	 484
Defer Optimization	 484
Refactor When Necessary	 485
Give Everyone Ownership of the Code	 485
Use Coding Standards	 486
Promote Generalization	 486
Use Pair Programming	 486
Test Constantly	 486
Integrate Continuously	 486
Work Sustainably	 487
Use Test-Driven and Test-First Development	 487

Scrum	 488
Scrum Roles	 489
Scrum Sprints	 490
Planning Poker	 491

Contents

xxiv

Burndown	 492
Velocity	 494

Lean	 494
Lean Principles	 494

Crystal	 495
Crystal Clear	 498
Crystal Yellow	 498
Crystal Orange	 499

Feature-Driven Development	 500
FDD Roles	 501
FDD Phases	 502

Develop a Model	 502
Build a Feature List	 502
Plan by Feature	 503
Design by Feature	 503
Build by Feature	 504

FDD Iteration Milestones	 504
Disciplined Agile Delivery	 506

DAD Principles	 506
DAD Roles	 506
DAD Phases	 507

Dynamic Systems Development Method	 508
DSDM Phases	 508
DSDM Principles	 510
DSDM Roles	 511

Kanban	 512
Kanban Principles	 513
Kanban Practices	 513
Kanban Board	 514

Summary	 515
What You Learned in This Chapter	 517

PART III: ADVANCED TOPICS

CHAPTER 20: SOFTWARE ETHICS	 523

Ethical Behavior	 524
IEEE-CS/ACM	 524
ACS	 525
CPSR	 526
Business Ethics	 527
NADA	 528

Contents

xxv

Hacker Ethics	 529
Hacker Terms	 530

Responsibility	 531
Gray Areas	 533
Software Engineering Dilemmas	 535

Misusing Data and the Temptation of Free Data	 535
Disruptive Technology	 536
Algorithmic Bias	 537
False Confidence	 537
Lack of Oversight	 538
Getting Paid	 539

Thought Experiments	 539
The Tunnel Problem	 540
The Trolley Problem	 542

Summary	 544
What You Learned in This Chapter	 545

CHAPTER 21: FUTURE TRENDS	 547

Security	 548
UX/UI	 549
Code Packaging	 550
Cloud Technology	 551
Software Development	 552
Algorithms	 553
Tech Toys	 554
Summary	 555
What You Learned in This Chapter	 556

APPENDIX: SOLUTIONS TO EXERCISES� 559

GLOSSARY� 631

INDEX� 663

INTRODUCTION

Programming today is a race between software engineers striving to build bigger and better idiot-
proof programs, and the universe trying to build bigger and better idiots. So far the universe
is winning.

—Rick Cook

With modern development tools, it’s easy to sit down at the keyboard and bang out a working
program with no previous design or planning, and that’s fine under some circumstances. My VB
Helper (www.vb-helper.com) and C# Helper (www.csharphelper.com) websites contain
thousands of example programs written in Visual Basic and C#, respectively, and built using exactly
that approach. I had an idea (or someone asked me a question) and I pounded out a quick example.

Those types of programs are fine if you’re the only one using them and then for only a short while.
They’re also okay if, as on my websites, they’re intended only to demonstrate a programming
technique and they never leave the confines of the programming laboratory.

If this kind of slap-dash program escapes into the wild, however, the result can be disastrous. At best,
nonprogrammers who use these programs quickly become confused. At worst, they can wreak havoc
on their computers and even on those of their friends and coworkers.

Even experienced developers sometimes run afoul of these half-baked programs. I know someone
(I won’t give names, but I also won’t say it wasn’t me) who wrote a simple recursive script to delete
the files in a directory hierarchy. Unfortunately, the script recursively climbed its way to the top of the
directory tree and then started cheerfully deleting every file in the system. The script ran for only
about five seconds before it was stopped, but it had already trashed enough files that the operating
system had to be reinstalled from scratch. (Actually, some developers believe reinstalling the operating
system every year or so is character-building. If you agree, then perhaps this approach isn’t so bad.)

I know another experienced developer who, while experimenting with Windows system settings,
managed to set every system color to black. The result was a black cursor over a black desktop,
displaying black windows with black borders, menus, and text. This person (who wasn’t me this time)
eventually managed to fix things by rebooting and using another computer that wasn’t color-impaired
to walk through the process of fixing the settings using only keyboard accelerators. It was a triumph
of cleverness, but I suspect she would have rather skipped the whole episode and had her two wasted
days back.

For programs that are more than a few dozen lines long, or that will be given to unsuspecting end
users, this kind of free-spirited development approach simply won’t do. To produce applications that
are effective, safe, and reliable, you can’t just sit down and start typing. You need a plan. You
need . . . <drumroll> . . . software engineering.

http://www.vb-helper.com
http://www.csharphelper.com

Introduction

xxviii

This book describes software engineering. It explains what software engineering is and how it helps
produce applications that are effective, flexible, and robust enough for use in real-world situations.

This book won’t make you an expert systems analyst, software architect, project manager, or pro-
grammer, but it explains what those people do and why they are necessary for producing high-quality
software. It also gives you the tools that you need to start. You won’t rush out and lead a
1,000-person effort to build a new air traffic control system for the FAA, but it can help you work
effectively in small-scale and large-scale development projects. (It can also help you understand what
a prospective employer means when he says, “Yeah, we mostly use scrum with a few extra XP
techniques thrown in.”)

WHAT IS SOFTWARE ENGINEERING?

A formal definition of software engineering might sound something like, “An organized, analytical
approach to the design, development, use, and maintenance of software.”

More intuitively, software engineering is everything that you need to do to produce successful
software. It includes the steps that take a raw, possibly nebulous idea and turn it into a powerful and
intuitive application that can be enhanced to meet changing customer needs for years to come.

You might be tempted to restrict software engineering to mean only the beginning of the process,
when you perform the application’s design. After all, an aerospace engineer designs planes but doesn’t
build them or tack on a second passenger cabin if the first one becomes full. (Although I guess a space
shuttle riding piggyback on a 747 sort of achieved that goal.)

One of the big differences between software engineering and aerospace engineering (or most other
kinds of engineering) is that software isn’t physical. It exists only in the virtual world of the computer.
That means it’s easy to make changes to any part of a program even after it is completely written. In
contrast, if you wait until a bridge is finished and then tell your structural engineer that you’ve
decided to add two extra lanes and lift it three feet higher above the water, there’s a good chance he’ll
cackle wildly and offer you all sorts of creative but impractical suggestions for exactly what you can
do with your two extra lanes.

The flexibility granted to software by its virtual nature is both a blessing and a curse. It’s a blessing
because it lets you refine the program during development to better meet user needs, add new features to
take advantage of opportunities discovered during implementation, and make modifications to meet
evolving business requirements. Some applications even allow users to write scripts to perform new
tasks never envisioned by the developers. That type of flexibility isn’t possible in other types of
engineering.

Unfortunately, the flexibility that allows you to make changes throughout a software project’s life
cycle also lets you mess things up at any point during development. Adding a new feature can
break existing code or turn a simple, elegant design into a confusing mess. Constantly adding,
removing, and modifying features during development can make it impossible for different parts of
the system to work together. In some cases, it can even make it impossible to tell when the project
is finished.

Introduction

xxix

Because software is so malleable, design decisions can be made at any point up to the end of the
project. Actually, successful applications often continue to evolve long after the initial release.
Microsoft Word, for example, has been evolving for roughly 40 years, sometimes for the better,
sometimes for the worse. (If you don’t remember Clippy, search online to learn the tragic tale.)

The fact that changes can come at any time means that you need to consider the whole development
process as a single, long, complex task. You can’t simply “engineer” a great design, turn the program-
mers loose on it, and ride off into the sunset wrapped in the warm glow of a job well done. The
biggest design decisions may come early, and software development certainly has stages, but those
stages are linked, so you need to consider them all together.

WHY IS SOFTWARE ENGINEERING IMPORTANT?

Producing a software application is relatively simple in concept: Take an idea and turn it into a useful
program. Unfortunately for projects of any real scope, there are countless ways that a simple concept
can go wrong. Programmers may not understand what users want or need (which may be two
separate things), so they build the wrong application. The program might be so full of bugs that it’s
frustrating to use, impossible to fix, and can’t be enhanced over time. The program could be com-
pletely effective but so confusing that you need a PhD in puzzle-solving to use it. An absolutely
perfect application could even be killed by internal business politics or market forces.

Software engineering includes techniques for avoiding the many pitfalls that otherwise might send your
project down the road to failure. It ensures that the final application is effective, usable, and maintain-
able. It helps you meet milestones on schedule and produce a finished project on time and within
budget. Perhaps most importantly, software engineering gives you the flexibility to make changes to
meet unexpected demands without completely obliterating your schedule and budget constraints.

In short, software engineering lets you control what otherwise might seem like a random whirl-
wind of chaos.

WHO SHOULD READ THIS BOOK?

Everyone involved in any software development effort should have a basic understanding of software
engineering. Whether you’re an executive customer specifying the software’s purpose and features, an
end user who will eventually spend time working with (and reporting bugs in) the finished application, a
lead developer who keeps other programmers on track (and not playing too much Minecraft), or the guy
who fetches donuts for the weekly meeting, you need to understand how all of the pieces of the process
fit together. A failure by any of these people (particularly the donut wallah) affects everyone else, so it’s
essential that everyone knows the warning signs that indicate the project may be veering toward disaster.

This book is mainly intended for people with limited experience in software engineering. It doesn’t expect
you to have any previous experience with software development, project management, or programming.
(I suspect most readers will have some experience with donuts, but that’s not necessary either.)

Introduction

xxx

Even if you have some familiarity with those topics, particularly programming, you may still find this
book informative. Most software developers focus primarily on one piece of the puzzle and don’t
really understand the rest of the process. It’s worth learning how the pieces interact to help guide the
project toward success.

This book does not explain how to program. It does explain some techniques programmers can use
to produce code that is flexible enough to handle the inevitable change requests, is easy to debug (at
least your code will be), and is easy to enhance and maintain in the future (more change requests), but
they are described in general terms and don’t require you to know how to program.

If you don’t work in a programming role—for example, if you’re an end user or a project manager—
you’ll hopefully find that material interesting even if you don’t use it directly. You may also find some
techniques that are surprisingly applicable to nonprogramming problems. For example, techniques
for generating problem-solving approaches apply to all sorts of problems, not just programming
decisions. (You can also ask developers, “Are you using assertions and gray-box testing methods
before unit testing?” just to see if they understand what you’re talking about. Basically, you’re using
gray-box testing to see if the developers know what gray-box testing is. You’ll learn more about that
in Chapter 13, “Testing.”)

APPROACH

This book is divided into three parts. The first part describes the basic tasks that you need to complete
and deliver useful software, things such as design, programming, and testing. The book’s second part
describes some common software process models that use different techniques to perform those tasks.

The third and final part of the book contains two bonus chapters, “Software Ethics” and “Future
Trends,” that provide useful information for any software developer but that didn’t fit in well with
the earlier parts of the book. After those come the Appendix, which contains the answers to the
chapters’ exercises, and the Glossary.

Before you can begin to work on a software development project, however, you need to do some
preparation. You need to set up tools and techniques that help you track your progress throughout
the project. If you don’t keep track of your progress, it’s shockingly easy to fall hopelessly far behind.
Chapter 1, “Software Engineering from 20,000 Feet,” provides a high-level overview. Chapter 2,
“Before the Beginning,” and Chapter 3, “The Team,” describe some of the other setup tasks that you
need to start before the more concrete development can really get rolling.

After you have the preliminaries in place, there are many approaches that you can take to produce
software. All of those approaches have the same goal (making useful software), so they must handle
roughly the same tasks. These are things such as gathering requirements, building a plan, and actually
writing the code. The first part of this book describes these tasks. Chapter 1 explains those tasks at a
high level. Chapters 4 through 16 provide additional details about what these tasks are and how you
can accomplish them effectively.

The second part of the book describes some of the more popular software development approaches.
All of these models address the same issues described in the earlier chapters but in different ways.

Introduction

xxxi

Some focus on predictability so that you know exactly what features will be provided and when.
Others focus on creating the most features as quickly as possible, even if that means straying from the
original design. Chapters 17 through 19 describe some of the most popular of these develop-
ment models.

Chapter 20 discusses software ethics. Software presents some unique ethical dilemmas and artificial
intelligence (AI) provides a framework for some situations that are interesting if somewhat unlikely.
Finally, in Chapter 21, I make some (probably foolish) predictions about software engineering trends.

That’s the basic path this book gives you for learning software engineering. First learn the tasks that
you need to complete to deliver useful software. Next, learn how different models handle those tasks.
Then finish with some more thoughtful material.

However, many people have trouble learning by slogging through a tedious enumeration of facts.
(I certainly do!) To make the information a bit easier to absorb, this book includes a few
other elements.

Each chapter ends with exercises that you can use to see if you were paying attention while you read
the chapter. I don’t like exercises that merely ask you to repeat what is in the chapter. (Quick, what
are some advantages and disadvantages of the ethereal nature of software?) Most of the exercises ask
you to expand on the chapter’s main ideas. Hopefully, they’ll make you think about new ways to use
what’s explained in the chapters.

Sometimes, the exercises are the only way I could sneak some more information into the chapter that
didn’t quite fit in any of its sections. In those cases, the questions and the answers provided in the
Appendix are more like extended digressions and thought experiments than quiz questions.

I strongly recommend that you at least skim the exercises and think about them. Then ask yourself if
you understand the solutions. All of the solutions are included in the Appendix.

WHAT THIS BOOK COVERS (AND WHAT IT DOESN’T)

This book describes software engineering, the tasks that you must perform to successfully complete a
software project, and some of the most popular developer models that you can use to try to achieve
your goals. It doesn’t cover every last detail, but it does explain the overall process so that you can
figure out how you fit into the process.

This book does not explain every possible development model. Actually, it barely scratches the surface
of the dozens (possibly hundreds) of models that are in use in the software industry. This book
describes only some of the most popular development approaches and then only relatively briefly.

If you decide that you want to learn more about a particular approach, you can turn to the hundreds
of books and thousands of web pages written about specific models. Many development models also
have their own organizations with websites dedicated to their promotion. For example, see www
.extremeprogramming.org, https://agilemanifesto.org, and www.scrum.org.

This book also isn’t an exhaustive encyclopedia of software development tricks and tips. It describes
some general ideas and concepts that make it easier to build robust software, but its focus is on
higher-level software engineering issues, so it doesn’t have room to cover all of the clever techniques

http://www.extremeprogramming.org
http://www.extremeprogramming.org
https://agilemanifesto.org
http://www.scrum.org

Introduction

xxxii

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, I’ve used several
conventions throughout the book.

that developers use to make programs better. This book also doesn’t focus on a specific programming
language, so it can’t take advantage of language-specific tools or techniques.

WHAT TOOLS DO YOU NEED?

You don’t need any tools to read this book. All you need is the ability to read the book. (And perhaps
reading glasses. Or perhaps a text-to-speech tool if you have an electronic version that you want to
“read” while driving. Or perhaps a friend to read it to you. Okay, I guess you have several options.)

To actually participate in a development effort, you may need a lot of tools. If you’re working on a
small, one-person project, you might need only a programming environment such as Jupyter
Notebook, Visual Studio, Eclipse, RAD Studio, or whatever. For larger team efforts, you’ll also need
tools for project management, documentation (word processors), change tracking, software revision
tracking, and more. And, of course, you’ll need other developers to help you. This book describes
these tools, but you certainly don’t need them to read the book.

SPLENDID SIDEBARS

Sidebars such as this one contain additional information and side topics.

WARNING  Boxes like this one hold important information that is directly rele-
vant to the surrounding text. There are a lot of ways a software project can fail,
so these warn you about “worst practices” that you should avoid.

NOTE  For anyone who's adopted the book as part of teaching a software
engineering course, I've provided instructor supplemental materials (ISM) that
you can use. Go to the book details page. Click the "Related Resources" link
(or scroll down the page) to navigate to the "View Instructor Companion Site"
link. Click the link to open the Instructor Companion Site page. To access and
download the ISM, you'll need to sign in to request them. If you don't have a
Wiley account, you'll need to sign up to create one.

Introduction

xxxiii

NOTE  These boxes indicate notes, tips, hints, tricks, and asides to the current
discussion. They look like this.

As for styles in the text:

➤ Important words are highlighted when they are introduced.

➤ Keyboard strokes are shown like this: Ctrl+A. This one means you should hold down the Ctrl
key (or Control or CTL or whatever it’s labeled on your keyboard) and press the A key.

➤ This book includes little actual program code because I don’t know what programming
languages you use (if any). When there is code, it is formatted like the following:

// Return true if a and b are relatively prime.
private bool AreRelativelyPrime(int a, int b)
{
 // Only 1 and -1 are relatively prime to 0.
 if (a == 0) return ((b == 1) || (b == -1));
 if (b == 0) return ((a == 1) || (a == -1));
 int gcd = GCD(a, b);
 return ((gcd == 1) || (gcd == -1));
}

(Don’t worry if you can’t understand a particular piece of code. The text explains
what it does.)

➤ Filenames, URLs, and the occasional piece of code within the text are shown like this: www
.csharphelper.com.

ERRATA

I’ve done my best to avoid errors in this book, and this book has passed through the word processors
of a small army of editors and technical reviewers. However, no nontrivial project is ever completely
without mistakes. (That’s one of the more important lessons in this book.) The best I can hope for is
that any remaining errors are small enough that they don’t distract you from the meaning of the text.

If you find an error in one of my books (like a spelling mistake, broken piece of code, or something
that just doesn’t make sense), I would be grateful for your feedback. Sending in errata may save other
readers hours of frustration. At the same time, you’ll be helping me provide even higher quality
information.

To find the errata page for this book, go to www.wiley.com and search for the book. Then, on the
book details page, click the Errata link. On this page you can view all of the errata submitted for
this book.

If you don’t spot “your” error on the Book Errata page, please email it to our Customer Service Team
at wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

http://www.csharphelper.com
http://www.csharphelper.com
http://www.wiley.com
mailto:wileysupport@wiley.com

Introduction

xxxiv

IMPORTANT URLs

Here’s a summary of important URLs related to this book:

➤➤ RodStephens@CSharpHelper.com—My email address. I hope to hear from you!

➤➤ www.CSharpHelper.com—My C# website, which contains thousands of tips, tricks, and
examples for C# developers.

➤➤ www.vb-helper.com—My Visual Basic website, which contains thousands of tips, tricks,
and examples for Visual Basic developers.

CONTACTING THE AUTHOR

If you have questions, suggestions, comments, just want to say hi, want to exchange cookie recipes, or
whatever, email me at RodStephens@CSharpHelper.com. I can’t promise that I’ll be able to help
you with every problem, but I do promise to try. (And I have some pretty good cookie recipes.)

DISCLAIMER

Software engineering isn’t always the most exciting topic, so in an attempt to keep you awake,
I picked some of the examples in this book for interest or humorous effect. (If you keep this book on
your nightstand as a last-ditch insomnia remedy, then I’ve failed.)

I mean no disrespect to any of the many talented software engineers out there who work long weeks
(despite the call for sustainable work levels) to produce top-quality applications for their customers.
(As for the untalented software engineers out there, their work can speak for them better than I can.)

I also don’t mean to discount any of the development models described in this book or the people
who worked on or with them. Every one of them represents a huge amount of work and research,
and all of them have their places in software engineering, past or present.

Because this book has limited space, I had to leave out many software development methodologies
and programming best practices. Even the methodologies that are described are not covered in full
detail because there just isn’t room.

Finally, I mean no disrespect to people named Fred, or anyone else for that matter. (Except for one
particular Fred, who I’m sure retired from software development long ago.)

So get out your reading glasses, grab your favorite caffeinated beverage, and prepare to enter the
world of software engineering. Game on!

mailto:RodStephens@CSharpHelper.com
http://www.csharphelper.com
http://www.vb-helper.com
mailto:RodStephens@CSharpHelper.com

Software Engineering
Step-by-Step

➤➤CHAPTER 1: Software Engineering from 20,000 Feet

➤➤CHAPTER 2: Before the Beginning

➤➤CHAPTER 3: The Team

➤➤CHAPTER 4: Project Management

➤➤CHAPTER 5: Requirements Gathering

➤➤CHAPTER 6: High-Level Design

➤➤CHAPTER 7: Low-Level Design

➤➤CHAPTER 8: Security Design

➤➤CHAPTER 9: User Experience Design

➤➤CHAPTER 10: Programming

➤➤CHAPTER 11: Algorithms

➤➤CHAPTER 12: Programming Languages

➤➤CHAPTER 13: Testing

➤➤CHAPTER 14: Deployment

PART I

2  ❘  ﻿PART I   SOFTWARE ENGINEERING STEP-BY-STEP

➤➤CHAPTER 15: Metrics

➤➤CHAPTER 16: Maintenance

Software and cathedrals are much the same. First we build them, then we pray.

—Samuel Redwine

In principle, software engineering is a simple two-step process: (1) Write a best-selling program, and
then (2) buy expensive toys with the profits. Unfortunately, the first step can be rather difficult. Say-
ing “write a best-selling program” is a bit like telling an author, “Write a best-selling book,” or telling
a baseball player “triple to left.” It’s a great idea, but knowing the goal doesn’t actually help you
achieve it.

To produce great software, you need to handle a huge number of complicated tasks, any one of which
can fail and sink the entire project. Over the years people have developed a multitude of methodolo-
gies and techniques to help keep software projects on track. Some of these, such as the waterfall and
V-model approaches, use detailed requirement specifications to exactly define the desired results
before development begins. Others, such as Scrum and agile techniques, rely on fast-paced incre-
mental development with frequent feedback to keep a project on track. Still other techniques, such
as cowboy coding and extreme programming, sound more like action-adventure films than software
development techniques. (I’ll say more about these in Part II, “Process Models.”)

Different development methodologies use different approaches, but they all perform roughly the same
tasks. They all determine what the software should do and how it should do it. They generate the
software, remove bugs from the code (some of the bugs, at least), make sure the software does more
or less what it should, and deploy the finished result.

NOTE  I call these basic items “tasks” and not “stages” or “steps” because
different software engineering approaches tackle them in different ways and
at different times. Calling them “stages” or “steps” would probably be mis-
leading because it would imply that all projects move through the stages in the
same predictable order and that’s not true.

The chapters in the first part of this book describe those basic tasks that any successful software
project must handle in some way. They explain the main steps in software development and describe
some of the myriad ways a project can fail to handle those tasks. (The second part of the book
explains how different approaches such as waterfall and agile handle those tasks.)

The first chapter in this part of the book provides an overview of software development from a high
level. The subsequent chapters explain the pieces of the development process in greater detail.

Software Engineering
from 20,000 Feet

If you fail to plan, you are planning to fail.

—Benjamin Franklin

There are two ways of constructing a software design. One way is to make it
so simple that there are obviously no deficiencies. The other way is to make it
so complicated that there are no obvious deficiencies. The first method is far
more difficult.

—C.A.R. Hoare

What You Will Learn in This Chapter:

➤➤ The basic steps required for successful software engineering

➤➤ Ways in which software engineering differs from other kinds of engineering

➤➤ How fixing one bug can lead to others

➤➤ Why it is important to detect mistakes as early as possible

In many ways, software engineering is a lot like other kinds of engineering. Whether you’re
building a bridge, an airplane, a nuclear power plant, or a new and improved version of
Sudoku, you need to accomplish certain tasks. For example, you need to make a plan, fol-
low that plan, heroically overcome unexpected obstacles, and hire a great band to play at the
ribbon-cutting ceremony.

The following sections describe the steps you need to take to keep a software engineering
project on track. These are more or less the same for any large project, although there are some

1

4  ❘  CHAPTER 1   Software Engineering from 20,000 Feet

important differences that are specific to software engineering. Later chapters in this book provide a
lot more detail about these tasks.

REQUIREMENTS GATHERING

No big project can succeed without a plan. Sometimes a project doesn’t follow the plan closely, but
every big project must have a plan. The plan tells project members what they should be doing, when
and how long they should be doing it, and most important, what the project’s goals are. They give the
project direction.

One of the first steps in a software project is figuring out the requirements. You need to find out what
the customers want and what the customers need. Depending on how well-defined the user’s needs
are, this chore can be time-consuming.

After you determine the customers’ wants and needs (which are not always the same), you can turn
them into requirements documents. Those documents tell the customers what they will be getting, and
they tell the project members what they will be building.

NOTE  I refer to requirements a lot in this book. In general, when I say require-
ments, I mean the officially sanctioned requirements as recorded in the
requirements documents and later carved in marble on the project’s memorial.
Anything else (such as customer suggestions, developer complaints, and
management wishful thinking) are not part of the requirements until they are
approved by the powers that be.

WHO’S THE CUSTOMER?

Sometimes, it’s easy to tell who the customer is. If you’re writing software for
another part of your own company, it may be obvious who the customers are. In that
case, you can sit down with them and talk about what the software should do.

In other cases, you may have only a vague notion of who will use the finished
software. For example, if you’re creating a new online card game, it may be hard to
identify the customers until after you start marketing the game.

Sometimes, you may even be the customer. I write software for myself all the time.
This has a lot of advantages. For example, I know exactly what I want (usually) and
I know more or less how hard it will be to provide different features. (Unfortunately,
I also sometimes have a hard time saying no to myself, so projects can drag on for a
lot longer than they should.)

In any project, you should try to identify your customers and interact with them as
much as possible so that you can design the most useful application possible.

High-Level Design  ❘  5

Throughout the project, both customers and team members can refer to the requirements to see if the
project is heading in the right direction. If someone suggests that the project should include a video
tutorial, you can see if that was included in the requirements. If this is a new feature, you might allow
that change if it would be useful and wouldn’t mess up the rest of the schedule. If that request doesn’t
make sense, either because it wouldn’t add value to the project or you can’t do it with the time you
have, then you may need to defer it for a later release.

HIGH-LEVEL DESIGN

After you know the project’s requirements, you can start working on the high-level design. The high-
level design includes such things as decisions about what platform to use (such as desktop, laptop,
tablet, or phone), what data design to use (such as direct access, 2-tier, or 3-tier), and what inter-
faces with other systems to use (such as external purchasing systems or a payroll system hosted in
the cloud).

The high-level design should also include information about the project architecture at a relatively
high level. You should break the project into the large chunks that handle the project’s major areas of
functionality. Depending on your approach, this may include a list of the modules that you need to
build or a list of families of classes.

For example, suppose you’re building a system to manage the results of ostrich races. You might
decide the project needs the following major pieces:

➤➤ Database (to hold the data)

➤➤ Classes (for example, Race, Ostrich, Jockey, and Wager classes)

CHANGE HAPPENS

Although there are some similarities between software and other kinds of engineer-
ing, the fact that software doesn’t exist in any physical way means there are some
major differences as well. Because software is so malleable, users frequently ask for
new features up to the day before the release party. They ask developers to shorten
schedules and request last-minute changes such as switching database platforms or
even hardware platforms. (Yes, both of those have happened to me.) “The program
is just 0s and 1s,” they reason. “The 0s and 1s don’t care whether they run on an
Android tablet or an iPhone, do they?”

In contrast, a company wouldn’t ask an architectural firm to move a new convention
center across the street at the last minute; a city transportation authority wouldn’t
ask the builder to add an extra lane to a freeway bridge right after it opens; and
no one would try to insert an atrium level at the bottom of a newly completed
90-story building.

6  ❘  CHAPTER 1   Software Engineering from 20,000 Feet

➤➤ User interfaces (to enter Ostrich and Jockey data, enter race results, calculate odds, produce
result reports, and create new races)

➤➤ External interfaces (to send information and spam to participants and fans via email, text
message, voicemail, pager, carrier pigeon, and anything else we can think of)

You should make sure the high-level design covers every aspect of the requirements. It should specify
what the pieces do and how they should interact, but it should include as few details as possible
about how the pieces do their jobs.

LOW-LEVEL DESIGN

After your high-level design breaks the project into pieces, you can assign those pieces to groups
within the project so they can work on low-level designs. The low-level design includes information
about how that piece of the project should work. The design doesn’t need to give every last nitpicky
detail necessary to implement the project’s major pieces, but it should give enough guidance to the
developers who will implement those pieces.

For example, the ostrich racing application’s database piece would include an initial design for the
database. It should sketch out the tables that will hold the race, ostrich, and jockey information using
proper first, second, and third normal forms. (You can argue about whether it needs higher levels of
normalization.)

At this point you will also discover interactions between the different pieces of the project that may
require changes here and there. For example, while working on the ostrich project’s external inter-
faces, you may decide to add a new table to hold email, text messaging, and other information for
fans. Or you may find that the printing module will be easier if you add a new stored procedure to
the database design.

DEVELOPMENT

After you’ve created the high- and low-level designs, it’s time for the programmers to get to work.
(Actually, the programmers should have been hard at work gathering requirements, creating the high-
level designs, and refining them into low-level designs, but development is the part that many pro-
grammers enjoy the most, so that’s often where they think the “real” work begins.) The programmers
continue refining the low-level designs until they know how to implement those designs in code.

TO DESIGN OR NOT TO DESIGN, THAT IS THE QUESTION

At this point, fans of extreme programming, Scrum, and other incremental develop-
ment approaches may be rolling their eyes, snorting in derision, and muttering about
how they don’t need high-level designs.

Let’s defer this argument until Chapter 6, “High-Level Design,” which talks about
high-level design in greater detail. For now, I’ll just claim that every design meth-
odology needs design, even if it doesn’t come in the form of a giant written design
specification carved into a block of marble.

Testing  ❘  7

(In fact, in one of my favorite development techniques, you basically just keep refining the design
to give more and more detail until it would be easier to just write the code instead. Then you do
exactly that.)

As the programmers write the code, they test it to make sure it doesn’t contain any bugs.

At this point, any experienced developers should be snickering if not actually laughing out loud. It’s a
programming axiom that no nontrivial program is completely bug-free. So let me rephrase the previ-
ous paragraph.

As the programmers write the code, they test it to find and remove as many bugs as they
reasonably can.

TESTING

Effectively testing your own code is extremely hard. If you just wrote the code, you obviously didn’t
insert bugs intentionally. If you knew there was a bug in the code, you would have fixed it before
you wrote it. That idea often leads programmers to assume their code is correct (I guess they’re just
naturally optimistic), so they don’t always test it as thoroughly as they should.

Even if a particular piece of code is thoroughly tested and contains no (or few) bugs, there’s no guar-
antee that it will work properly with the other parts of the system.

One way to address both of these problems (developers don’t test their own code well and the pieces
may not work together) is to perform different kinds of tests. First developers test their own code.
Then testers who didn’t write the code test it. After a piece of code seems to work properly, it is inte-
grated into the rest of the project, and the whole thing is tested to see if the new code broke anything.

Any time a test fails, the programmers dive back into the code to figure out what’s going wrong and
how to fix it. After any repairs, the code goes back into the queue for retesting.

A SWARM OF BUGS

At this point you may wonder why you need to retest the code. After all, you just
fixed it, right?

Unfortunately, fixing a bug often creates a new bug. Sometimes the bug fix is incor-
rect. Other times it breaks another piece of code that depended on the original buggy
behavior. In that case, the known bug hides an unknown bug.

Still other times the programmer might change some correct behavior to a different
correct behavior without realizing that some other code depended on the original
correct behavior. (Imagine if someone switched the arrangement of your hot- and
cold-water faucets. Either arrangement would work just fine, but you may get a
nasty surprise the next time you take a shower.)

Anytime you change the code, whether by adding new code or fixing old code, you
need to test it to make sure everything works as it should.

8  ❘  CHAPTER 1   Software Engineering from 20,000 Feet

Unfortunately, you can never be certain that you’ve caught every bug. If you run your tests and don’t
find anything wrong, that doesn’t mean there are no bugs; it just means you haven’t found them. As
programming pioneer Edsger W. Dijkstra said, “Testing shows the presence, not the absence of bugs.”
(This issue can become philosophical. If a bug is never detected, is it still a bug?)

The best you can do is test and fix bugs until they occur at an acceptably low rate. If bugs don’t
bother users too frequently or too severely when they do occur, then you’re ready to move on to
deployment.

COUNTING BUGS

Suppose requirements gathering, high-level design, low-level design, and develop-
ment works like this: Every time you make a decision, the next task in the sequence
includes two more decisions that depend on the first one. For example, when you
make a requirements decision, the high-level design includes two decisions that
depend on it. (This isn’t exactly the way it works, but it’s not as ridiculous as you
might wish.)

Now suppose you made a mistake during requirements gathering. (The customer
said the application had to support 30 users with a 5-second response time, but you
heard 5 users with a 30-second response time.)

If you detect the error during the requirements gathering phase, you need to fix only
that one error. But how many incorrect decisions could depend on that one mistake
if you don’t discover the problem until after development is complete?

The one mistake in requirements gathering leads to two decisions in high-level design
that could be incorrect.

Each of the two possible mistakes in high-level design leads to two new decisions in
low-level design that could also be wrong, giving a total of 2 × 2 = 4 possible mis-
takes in low-level design.

Each of the four suspicious low-level design decisions lead to two more deci-
sions during development, giving a total of 4 × 2 = 8 possible mistakes during
development.

Adding up all the mistakes in requirements gathering, high-level design, low-level
design, and development gives a total of 1 + 2 + 4 + 8 = 15 possible mistakes. Fig-
ure 1.1 shows how the potential mistakes propagate.

Requirements

High-level Design

Low-level Design

Development

FIGURE 1.1:  The circles represent possible mistakes at different stages of develop-
ment. One early mistake can lead to many later mistakes.

Deployment  ❘  9

Some people think of testing as something you do after the fact to verify that the code you wrote is
correct. Actually, testing is critical at every stage of development to ensure the resulting application
is usable.

DEPLOYMENT

Ideally, you roll out your software, the users are overjoyed, and everyone lives happily ever after. If
you’ve built a new variant of Tetris and you release it on the Internet, your deployment may actually
be that simple.

Often, however, things don’t go so smoothly. Deployment can be difficult, time-consuming, and
expensive. For example, suppose you’ve written a new billing system to track payments from your
company’s millions of customers. Deployment might involve any or all of the following:

➤➤ New computers for the backend database

➤➤ A new network

➤➤ New computers for the users

➤➤ User training

➤➤ On-site support while the users get to know the new system

➤➤ Parallel operations while some users get to know the new system and other users keep using
the old system

➤➤ Special data maintenance chores to keep the old and new databases synchronized

➤➤ Massive bug fixing when the 250 users discover dozens or hundreds of bugs that testing
didn’t uncover

➤➤ Other nonsense that no one could possibly predict

To make matters worse, you usually won’t know that all of these decisions were
related. Just because you find some of the 15 bugs doesn’t mean you’ll know that the
others exist.

In this example, you have 15 times as many decisions to track down, examine, and
possibly fix than you would have if you had discovered the mistake right away dur-
ing requirements gathering. That leads to one of the most important rules of soft-
ware engineering:

The longer a bug remains undetected, the harder it is to fix.

